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ABSTRACT 
 

Temperature represents a significant obstacle to the fast 

charging capability of batteries. This study presents the 

internal temperature estimation of commercially available 

high-capacity pouch lithium-ion batteries across various 

states of charge (SOC) and state of health (SOH) using 

features extracted via electrochemical impedance 

measurements. Sensitivity analysis in conjunction with 

Pearson correlation coefficient (PCC) analysis is conducted 

on the electrochemical impedance spectroscopy (EIS) data, 

and the phase part of the EIS is used to create a temperature 

model that is highly sensitive to temperature and independent 

of the SOC and SOH, hence increasing the general 

applicability of the estimation in the battery’s entire life span. 

The model demonstrates a high accuracy with RMSE less than 

0.8 ℃ in predicting the internal temperature. 

 
1. Introduction 

 

Lithium-ion batteries (LIBs) have gained widespread 

attention and have become the dominant power source in their 

applications in the automotive industry. Customer demands 

for fast charging/discharge at higher rates, especially for 

high-capacity LIBs, can result in potential thermal issues. 

Despite their increasing market penetration, the widespread 

adoption of electric mobilities continues to face technological 

bottlenecks associated with thermal issues in LIBs [1]. This 

study uses EIS measurements to present the internal 

temperature estimation of high-capacity pouch lithium-ion 

batteries across various SOCs and SOHs. This method uses 

features independent of both SOC and SOH, increasing the 

accuracy and general applicability of the estimation of the 

internal temperature. 

 
2. Temperature estimation methodology 

 
Owing to the influence of temperature on electrochemical 

reactions occurring within batteries, EIS undergoes variation 

with fluctuations in battery temperature. The EIS-based state 

of temperature (SOT) estimation is often based on the 

temperature dependency on the battery impedance [2]. 

Because battery impedance is influenced by the SOC and SOH 

of the battery, uncertainties are likely to affect SOT 

estimation, potentially resulting in heightened estimation 

errors. Hence, it is crucial to thoroughly examine the EIS 

outcomes and identify an ideal frequency or frequency range 

wherein specific impedance characteristics are sensitive to 

battery temperature while remaining unaffected by battery 

SOC and SOH. A 70 Ah pouch nickel manganese cobalt oxide 

(NMC) is used for analysis in this study. The EIS temperature 

was measured from 0 to 60 ℃ with a 5 percent increment. 

The SOC-EIS test was performed at 20% intervals, from 100% 

to 0%. Each EIS was taken after 3 hours of rest for the battery 

to reach electrical equilibrium. The battery was cycled at a 

rate of 0.1 C (7 A). EIS was measured every 50 cycles to 

obtain the SOH data. 

 

2.1 EIS temperature analysis 

 

The reduction in temperature corresponds to an increase in 

the magnitude of the impedance spectra, indicating an 

electrochemical action, as shown in Fig. 1(a). The resulting 

EIS data was meticulously analyzed to identify a single 

frequency point that fulfills three criteria: (1) Demonstrates a 

strong correlation with temperature. (2) Remains unaffected 

by battery SOC and SOH variations, ensuring temperature 

prediction regardless of charge level or degradation state. (3) 

Exhibits high sensitivity to temperature changes. The 

sensitivity of the phase and magnitude components to 

temperature is shown in Fig. 1(b) and (c), respectively. 

2.2 Identifying optimal frequency for SOT estimation 

 

 
(a) 

 

(b) 

 
(c) 

 

(d) 

 
Fig. 1: (a) EIS Nyquist plots with various temperatures, (b) Phase 

change with temperature, (c) Magnitude change with temperature, (d) 

PCC of Phase and Magnitude components of the EIS with temperature 

 

The PCC in Eq. (1) is used to evaluate the relationship 

between the EIS parameters and temperatures ranging 

from 0 to 60 ℃. 
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(a) 

 

(b) 

 
Fig. 2: (a) Correlation of Phase and Magnitude components of the 

EIS with SOC, (b) Correlation of Phase and Magnitude components of 

the EIS with SOH 
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(1) 

where x and y are random variables. The variables xi, and yi 

represent i-indexed individual sample values with means 

given as x ̄and ȳ, respectively. The variable n represents the 

size of the tested data.  

Examining the correlation between phase and temperature 

across all the measured frequencies reveals that frequencies 

within the range of 5Hz to 160Hz exhibit PCC values 

exceeding 0.97. Similarly, frequencies ranging from 1.5 Hz to 

80 Hz demonstrate correlation coefficients greater than 0.90 

for magnitude and temperature correlation. The correlation 

results are shown in Fig.1(d). The correlation of the phase 

and magnitude components and SOC at various stages of 

battery degradation is conducted as shown in Fig. 2 (a). The 

results generally depict that SOC has a relatively lower impact 

on the magnitude and phase parts of the EIS measurements at 

frequencies between 100 Hz and 10 Hz. Further correlation 

analysis is performed to ascertain the correlation of the EIS 

components with the battery aging. From Fig. 2 (b), the 

magnitude component of the EIS is highly dependent on the 

battery SOH at all frequencies, while the phase shows a 

correlation of less than 0.15 at 40 Hz frequency. With these 

analyses done, the phase component at 40 Hz was chosen as 

the optimal frequency to predict the temperature. The 

magnitude component was ignored because of its high 

dependence on the SOH. 
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Fig. 3:(a) The change of the EIS phase with temperature change of 

the two cells, (b) Double linear regression model 
(a) 

 

(b) 

 

Fig. 4; (a) Double linear fitting of cell 1 (b) Double linear Double 

linear fitting of cell 2 

 

2.3 Temperature Estimation Model 

 
The change of the EIS phase with temperature change is 

shown in Fig. 3 (a). The temperature curve has two different 

gradients. Two different fits allow us to capture different 

parts of the data more accurately (0 to 25 ℃ and 25 to 60 ℃) 

as shown in Fig. 3 (b). A linear regression model is used to 

relate the phase component at 40 Hz to the temperature in Eq. 

2., where Test represents the estimated temperature, 𝜑 

indicates the phase component and a and b denotes the 

gradient and intercept, respectively. 

 

3. Results and discussions 

 
Two different cells were examined to confirm the 

temperature estimation's accuracy. The predictions of the 

temperature of the cells resulted in a good root mean square 

error of less than 0.8 ℃. The linear fitting results of the phase 

part of the impedance at 40 Hz are shown in Fig.4. The 

calibration coefficient of each cell is shown in Table 1. Where 

a1 and a2 are the gradients and b1 and b2 are the intercepts of 

the first and second fitting, respectively.  
Table 1. Model coefficients and performance  

Cell No. a1 b1 a2 b2 RMSE(℃) 

1 1.88 37.38 4.51 54.94 0.64 

2 1.67 32.70 3.73 42.55 0.76 

 

4. Conclusions 

 

This work presented a temperature estimation method 

considering the impact of battery SOC and SOH utilizing EIS. 

It is deduced that the phase component of the EIS at 40 Hz is 

best for temperature estimation. The model estimates the 

temperature with an RMSE of less than 0.8 ℃. Future work 

will develop a temperature model during the battery operation.  
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